
Mechanical Waves



Ripples on a lake, musical sounds, seismic tremors triggered by an earthquake—
all these are wave phenomena.

Waves can occur whenever a system is disturbed from equilibrium and when the disturbance can 
travel, or propagate, from one region of the system to another. 

As a wave propagates, it carries energy. The energy in light waves from the sun warms the surface 
of our planet; the energy in seismic waves can crack our planet’s crust. 

Mechanical waves—waves that travel within some material called a medium.

Electromagnetic waves—including light, radio waves, infrared and ultraviolet radiation, 
and x rays—can propagate even in empty space, where there is no medium

Types of waves:

Wave = propagation of an oscillation



LEARNING GOALS

 What is meant by a mechanical wave, and the different varieties of mechanical 
waves.

 How to use the relationship among speed, frequency, and wavelength for a 
periodic wave.

 How to interpret and use the mathematical expression for a sinusoidal periodic 
wave.

 How to calculate the speed of waves on a rope or string.

 How to calculate the rate at which a mechanical wave transports energy.

 What happens when mechanical waves overlap and interfere.

 The properties of standing waves on a string, and how to analyze these waves.

 How stringed instruments produce sounds of specific frequencies.



I. Types of Mechanical Waves
A mechanical wave = disturbance that travels through some material or substance called medium.

As the wave travels through the medium, the particles that make up the medium undergo 
displacements of various kinds, depending on the nature of the wave.

Three varieties of mechanical waves:

1. Transverse wave: the displacements of the medium are perpendicular or transverse to the 
direction of travel of the wave along the medium.

2. Longitudinal wave: the motions of the particles of the medium are back and forth along the same 
direction that the wave travels. 

3. wave with both longitudinal and transverse components.



Transverse wave

SHM

Set up the 
wave by SHM

That propagates with v in the mediumOscillation

 particles from successive regions start to oscillate



Longitudinal wave
SHM

Set up the 
wave by SHM

That propagates with v in the mediumOscillation

 particles from successive regions start to oscillate



Observe:
 oscillation of medium particles for L and T waves
 once the wave passed the particles return to equilibrium



The different types pf waves have some common characteristics:

Wave front: the continuous line or surface including all the points in space reached by the wave at the 
same instant through the medium

As a function of the shape of the wave front the waves can be classified in:

Plane waves
Circular waves (2D)

Spherical waves (3D)

Perturbation initiated in the center

Source

At large distance from the source, the wave fronts become 
less and less curved => Flat wave front surfaces
=> plane waves



1. Wave speed  [v]
in each case the disturbance travels or propagates with a definite speed through the medium. 
This speed is called the speed of propagation, or simply the wave speed. Its value is 
determined in each case by the mechanical properties of the medium.

The wave speed is not the same as the speed with which particles move when they are 
disturbed by the wave (see later).

2. The medium itself does not travel through space; its individual particles undergo back-and-
forth or up-and-down motions around their equilibrium positions. The overall pattern of the wave 
disturbance is what travels. 

3. Waves transport energy, but not matter, from one region to another.  To set any of these 
systems into motion, we have to put in energy by doing mechanical work on the system. The 
wave motion transports this energy from one region of the medium to another. 

Waves characteristics:



II. Periodic Waves

The transverse wave on a stretched string in is an example of a wave pulse. The hand shakes 
the string up and down just once, exerting a transverse force on it as it does so. The result is 
a single “wiggle,” or pulse, that travels along the length of the string. The tension in the 
string restores its straight-line shape once the pulse has passed. => source =non-periodic 
disturbance

Longitudinal vs transverse wave pulse in a string

SHO

SHO



A more interesting situation develops when we give the free end of the string a repetitive, or 
periodic, motion. Then each particle in the string also undergoes periodic motion as the wave 
propagates, and we have a periodic wave. => source = periodic oscillation (SHO)

SHO



A block of mass m attached to a spring undergoes simple harmonic motion, producing a sinusoidal wave
that travels to the right on the string. (In a real-life system a driving force would have to be applied to the
block to replace the energy carried away by the wave.)

Periodic Transverse Waves

we move the end of the string up and down with simple harmonic motion (SHM) with amplitude A, 
frequency f angular frequency =2f and period T=1/f. The wave that results is a symmetrical 
sequence of crests and troughs. 

sinusoidal waves Obs. Any periodic wave can be represented as a
combination of sinusoidal waves. 

SHO

( ) cos( )y t A t  

Periodic 
waves with 
SHM



When a sinusoidal wave passes through a medium, every particle in the medium undergoes simple 
harmonic motion with the same frequency.

Wave motion vs. particle motion 
! Distinguish between the motion of the transverse wave along the string and the 

motion of a particle of the string. The wave moves with constant speed v along the length of the 
string, while the motion of the particle is simple harmonic and transverse (perpendicular) to the 
length of the string.

For a periodic wave, the shape of the string at 
any instant is a repeating pattern
=> wavelength of the wave, denoted by  [m]

The wave pattern travels with constant speed v 
and advances a distance of one wavelength in a 
time interval of one period T.

v f
T

  

Obs. Waves on a string propagate 1D but all the concepts remain valid for 2D, 3D cases

Wavelength



Periodic Longitudinal Waves

Sound wave = 
longitudinal 
wave in air 
(fluid) –see next 
courses… 
Acoustics



III.  Mathematical Description of a Wave

Many characteristics of periodic waves can be described by using the concepts of wave speed,
amplitude, period, frequency, and wavelength. Often, though, we need a more detailed description
of the positions and motions of individual particles of the medium at particular times during wave
propagation.

wave function =(x,t)

For a transverse wave y=y(x,t) describes the displacement y of points along x axis at time t

Wave Function for a Sinusoidal Wave

From this we can find the velocity and acceleration of any particle, the 
shape of the string, and anything else we want to know about the behavior 
of the string at any time.

( ) ( )

( , ) ( , )

y x y x

y x t y x t T

 
 General characteristics for any type of periodical wave

Wave = periodical phenomenon in space and time



- x direction

o x

Graphing the Wave Function

Shape of the string at t =0. Displacement of the particle at x =0 as a 
function of time



The wave speed

Is the speed with which we have to move along with the wave to keep alongside a point of a 
given phase, such as a particular crest of a wave on a string. 

For a wave traveling in the that means (kx-t) = constant.

Taking the derivative with respect to t:
dx

k
dt

 
dx

v
dt k


 

Speed of wave or 
phase speed

Equivalent definitions v f
k T

    

The quantity (kxt) is called the phase
Plays the role of an angular quantity [rad]

Its value for any values of x and t determines what part of the sinusoidal cycle is occurring at a 
particular point and time. 

Crest: y=A; cos (kxt) =1 => phase =0,2, 4…(2n )
Trough: y=-A, cos (kxt) =-1 => phase =, 3, 5…(2n+1) 

( , ) cos( )y x t A kx t 



Differential equation of the wave

Particle Velocity and Acceleration in a Sinusoidal Wave

From y(x,t) one can deduce the transverse velocity of a particle in a transverse wave vy(x,t)

-periodical function => SHM
-maximum value (vy

max=A)
-may be larger, equal or smaller than the wave speed v, depending on A and 

Particle Velocity

Particle Acceleration

Equivalent to what we got for SHM 

We can also compute partial derivatives of y(x,t) with respect to x, holding t constant. 



From:

And: 



 one of the most important equations in all of physics
 valid in the most general situation, whether the wave is periodical or not
 electric and magnetic field satisfy wave equation with v=c (speed of light) –light 

is an electromagnetic wave

Generalizing propagation in a 3D medium
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IV.  Speed of a wave

One of the key properties of any wave is the wave speed. 
Light waves in air have a much greater speed of propagation than do sound waves in air 3.108m/s vs 
344m/s;  that’s why you see the flash from a bolt of lightning before you hear the clap of thunder. 

We would like to correlate the speed of a wave in a medium and some characteristic properties 
of the medium

it turns out that for many types of mechanical waves, including waves on a string, the expression for
wave speed has the same general form:



Longitudinal sound waves

The gas pressure provides the force that tends to return the gas to its undisturbed state 
when a sound wave passes through. The inertia is provided by the density, or mass per 
unit volume, of the gas.

0pB
v


 

 
B = the bulk modulus of the medium
P0-equillibrium pressure of the gas
 =ratio of heat capacities

See next chapter Acoustics for details

Transverse waves in a string

The restoring force is the tension in the string F, it tends to bring back the string in 
the unperturbed position
The inertia resisting to the return to equilibrium is the mass of the string, more 
precisely the mass/unit length

/dm dx  or /m l 



V. Energy in Wave Motion

Propagating waves carry energy in their propagation.
To produce a wave we apply a force to a portion of the wave medium; the point where the 
force is applied moves, so we do work on the system. As the wave propagates, each portion 
of the medium exerts a force and does work on the adjoining portion

Transverse waves on a string:

a) Point a on a string carrying a
wave from left to right.
(b) The components of the force 
exerted on the part of the string
to the right of point a by the part of
the string to the left of point a.

( , )yF y x t
slope

F x


   



When point a moves in the y-direction, the force Fy does work on this point 
 therefore transfers energy into the part of the string to the right of a. 
 the corresponding power P (rate of doing work) at the point a is 

the transverse force Fy(x,t) at a times the transverse velocity vy(x,t)=y(x,t)/  t of that point :



For a sinusoidal wave:

The maximum value of the instantaneous power occurs when the sin2 function =1

To obtain the average power, we note that:
<sin2 function >over any whole number of cycles =1/2

The average rate of energy transfer is: 2A2 valid for any mechanical wave

for electromagnetic waves:  A2 independent on



Wave Intensity

Waves on a string carry energy in just one dimension of space (along the direction of the string). But 
other types of waves, including sound waves in air and seismic waves in the body of the earth, carry 
energy across all three dimensions of space. 

For waves that travel in three dimensions, we define the intensity (denoted by I) to be the time 
average rate at which energy is transported by the wave, per unit area, across a surface 
perpendicular to the direction of propagation.

2

average power
I=  

unit area

W

m
 
  

If waves spread out equally in all directions from a source, the intensity at a distance r from the 
source is inversely proportional to r2

The greater the distance from a wave source, the 
greater the area over which the wave power is 
distributed and the smaller the wave intensity.

If the power output of the source is P, then the
average intensity through a sphere with radius r and 
surface area 4r2 is: I=P/ 4r2 .

See later (Acoustics) the  geometrical attenuation of 3D waves



VI.  Wave Interference, Boundary Conditions, and Superposition

The interference represents the overlapping of waves that happen when several waves pass 
through the same area at the same time.

Up to this point we discussed waves that propagate continuously in the same direction. 

But when a wave strikes the boundaries of its medium, all or part of the wave is reflected. 

Reflection of a wave pulse

The initial and reflected waves overlap in the same region of the medium. This overlapping of 
waves is called interference. 

The Principle of Superposition Combining the displacements of the separate pulses 
at each point to obtain the actual displacement

The conditions at the end of the string, 
such as a rigid support or the complete 
absence of transverse force, are called 
boundary conditions.



Overlap of two wave pulses—
both right side up—traveling in 
opposite directions. 

Resulting oscillation is the vector sum of individual oscillations

The principle of superposition is of central importance in all types of 
waves. Superposition also applies to electromagnetic waves (such as 
light) and many other types of waves.

In some special conditions,  two sound waves did not combine in 
this simple linear way  =>  the sound you would hear in this 
situation would be a hopeless jumble.

When a friend talks to you while you are listening to music, you can 
distinguish the sound of speech and the sound of music from each 
other. This is precisely because the total sound wave reaching your 
ears is the algebraic sum of the wave produced by your friend’s 
voice and the wave produced by the speakers of your stereo. 



INTERFERENCE OF OSCILLATIONS

Analysis using phasor representation
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VII. Standing Waves on a String

consider the superposition of two waves propagating through the string:
one representing the original or incident wave and 
the other representing the wave reflected at the fixed end.

String fixed at its left end. Its right end is moved up and down in SHM to produce a wave that 
travels to the left; the wave reflected from the fixed end travels to the right. 

Standing waves



Because the wave pattern doesn’t appear to be moving in either direction along the string, it is 
called a standing wave. 
(To emphasize the difference, a wave that does move along the string is called a traveling wave.)



N: At a node the displacements of the two waves (incident + reflected) are always equal and 
opposite and cancel each other out. This cancellation is called destructive interference. 

A: At the antinodes the displacements of the two waves (incident + reflected) are always identical, 
giving a large resultant displacement; this phenomenon is called constructive interference.

The distance between successive nodes or between successive antinodes is one half-wavelength /2

N N

/2

/2

From the principle of superposition:



We can derive a wave function for the standing wave by adding the wave functions y1(x,t) and y2(x,t)
for  two waves with equal amplitude, period, and wavelength traveling in opposite directions. 

the wave reflected from a fixed end of a string is inverted, so we give a negative sign to one of the waves:

The standing-wave amplitude ASW is twice the 
amplitude A of either of the original traveling waves

cos cos 2sin sin
2 2

a b a b
a b

          
   



( , ) [Function of x]  [Function of time ]y x t  

ASW sin(kx)
at each instant of time 
the shape of the string is 
the same

But unlike a travelling 
wave the standing wave 
stays in the same 
position oscillating up 
and down as described 
by the sin(t ) factor

Each point in the string still undergoes simple harmonic motion, but all the points between any 
successive pair of nodes oscillate in phase. 

The position of nodes:

A standing wave, unlike a traveling wave, does not transfer energy from one end to the other. 
The two waves that form it would individually carry equal amounts of power in opposite 
directions. There is a local flow of energy from each node to the adjacent antinodes and back, but 
the average rate of energy transfer is zero at every point =>  the average power is zero



VIII. Normal Modes of a String

Such strings are found in many musical instruments, including pianos, violins, and guitars. 
When a guitar string is plucked, a wave is produced in the string; this wave is reflected and 
re-reflected from the ends of the string, making a standing wave. This standing wave on the 
string in turn produces a sound wave in the air, with a frequency determined by the 
properties of the string. This is what makes stringed instruments so useful in making music.

Let’s now consider a string of a definite length L, rigidly held at both ends. 

Both ends fixed =>
Boundary conditions: Nodes at each end

The condition for nodes: 

Waves can exist on the string if the wavelength is not equal to one of these values,
but there cannot be a steady wave pattern with nodes and antinodes, and the
total wave cannot be a standing wave. 



Corresponding to the series of possible standing-wave wavelengths n

The smallest frequency f1 corresponds to the wavelength 
(n=1);  1=2L

called the 
fundamental 
frequency

The other standing-wave frequencies fn=nv/2L are 
called harmonics

Musicians sometimes call them overtones

The first harmonic is the same as the fundamental 
frequency

The first four normal modes of 
a string fixed at both ends.



For a string with fixed at x=0 and x=L ends the wave function y(x,t) of the nth standing wave is 
given by:

Which satisfies the condition that there is a 
node at x=0

A normal mode of an oscillating system is a motion in which all particles of the system move 
sinusoidally with the same frequency.

There are infinitely many normal modes, each with its characteristic frequency and vibration 
pattern.

Fundamental =first 
harmonic

2nd harmonic 3rd harmonic 4th harmonic

Stroboscopic images



Standing Waves and String Instruments

As we have seen, the fundamental frequency of a vibrating string is f1=v/2L

The speed of waves on the string is determined by: 

the fundamental frequency of the sound 
wave created in the surrounding air by 
the vibrating string

depends on the properties of the string 

The inverse dependence of frequency on length L is illustrated by the long strings of the bass
(low-frequency) section of the piano or the bass viol compared with the shorter strings of the
treble section of the piano or the violin. The pitch of a violin or guitar is usually varied by
pressing a string against the fingerboard with the fingers to change the length L of the vibrating
portion of the string. Increasing the tension F increases the wave speed and thus increases the
frequency (and the pitch). All string instruments are “tuned” to the correct frequencies by
varying the tension; you tighten the string to raise the pitch. Finally, increasing the mass per
unit length decreases the wave speed and thus the frequency. The lower notes on a steel guitar
are produced by thicker strings, and one reason for winding the bass strings of a piano with
wire is to obtain the desired low frequency from a relatively short string.





Complex Standing Waves

If we could displace a string so that its shape is the same as one of the normal-mode patterns 
and then release it, it would vibrate with the frequency of that mode. Such a vibrating string 
would displace the surrounding air with the same frequency, producing a traveling sinusoidal 
sound wave that your ears would perceive as a pure tone.

But when a string is struck (as in a piano) or plucked (as is done to guitar strings), the shape of 
the displaced string is not as simple => The fundamental as well as many overtones are present 
in the resulting vibration. This motion is therefore a combination or superposition of many 
normal modes. 

Several simple harmonic motions of different
frequencies are present simultaneously, and the
displacement of any point on the string is the sum (or
superposition) of the displacements associated with the
individual modes.

When a guitar string is plucked (pulled into a triangular
shape) and released, a standing wave results. The
standing wave is well represented (except at the sharp
maximum point) by the sum of just three sinusoidal
functions. Including additional sinusoidal functions
further improves the representation.



The sound produced by the vibrating string is likewise a superposition of traveling sinusoidal 
sound waves, which you perceive as a rich, complex tone with the  fundamental frequency. 

The standing wave on the string and the traveling sound wave in the air have similar harmonic 
content (the extent to which frequencies higher than the fundamental are present).
The harmonic content depends on how the string is initially set into motion. 

It is possible to represent every possible motion of the string as some superposition
of normal-mode motions. Finding this representation for a given vibration pattern
is called harmonic analysis. 

The sum of sinusoidal functions that 
represents a complex wave is called a 
Fourier series 
=> Fourier series decomposition
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